88 research outputs found

    Integrated siRNA design based on surveying of features associated with high RNAi effectiveness

    Get PDF
    BACKGROUND: Short interfering RNAs have allowed the development of clean and easily regulated methods for disruption of gene expression. However, while these methods continue to grow in popularity, designing effective siRNA experiments can be challenging. The various existing siRNA design guidelines suffer from two problems: they differ considerably from each other, and they produce high levels of false-positive predictions when tested on data of independent origins. RESULTS: Using a distinctly large set of siRNA efficacy data assembled from a vast diversity of origins (the siRecords data, containing records of 3,277 siRNA experiments targeting 1,518 genes, derived from 1,417 independent studies), we conducted extensive analyses of all known features that have been implicated in increasing RNAi effectiveness. A number of features having positive impacts on siRNA efficacy were identified. By performing quantitative analyses on cooperative effects among these features, then applying a disjunctive rule merging (DRM) algorithm, we developed a bundle of siRNA design rule sets with the false positive problem well curbed. A comparison with 15 online siRNA design tools indicated that some of the rule sets we developed surpassed all of these design tools commonly used in siRNA design practice in positive predictive values (PPVs). CONCLUSION: The availability of the large and diverse siRNA dataset from siRecords and the approach we describe in this report have allowed the development of highly effective and generally applicable siRNA design rule sets. Together with ever improving RNAi lab techniques, these design rule sets are expected to make siRNAs a more useful tool for molecular genetics, functional genomics, and drug discovery studies

    ETV2 and VEZF1 interaction and regulation of the hematoendothelial lineage during embryogenesis

    Get PDF
    Ets variant 2 (Etv2), a member of the Ets factor family, has an essential role in the formation of endothelial and hematopoietic cell lineages during embryonic development. The functional role of ETS transcription factors is, in part, dependent on the interacting proteins. There are relatively few studies exploring the coordinated interplay between ETV2 and its interacting proteins that regulate mesodermal lineage determination. In order to identify novel ETV2 interacting partners, a yeast two-hybrid analysis was performed and the C2H2 zinc finger transcription factor VEZF1 (vascular endothelial zinc finger 1) was identified as a binding factor, which was specifically expressed within the endothelium during vascular development. To confirm this interaction, co-immunoprecipitation and GST pull down assays demonstrated the direct interaction between ETV2 and VEZF1. During embryoid body differentiation, Etv2 achieved its peak expression at day 3.0 followed by rapid downregulation, on the other hand Vezf1 expression increased through day 6 of EB differentiation. We have previously shown that ETV2 potently activated Flt1 gene transcription. Using a Flt1 promoter-luciferase reporter assay, we demonstrated that VEZF1 co-activated the Flt1 promoter. Electrophoretic mobility shift assay and Chromatin immunoprecipitation established VEZF1 binding to the Flt1 promoter. Vezf1 knockout embryonic stem cells had downregulation of hematoendothelial marker genes when undergoing embryoid body mediated mesodermal differentiation whereas overexpression of VEZF1 induced the expression of hematoendothelial genes during differentiation. These current studies provide insight into the co-regulation of the hemato-endothelial lineage development via a co-operative interaction between ETV2 and VEZF1

    Potential of Core-Collapse Supernova Neutrino Detection at JUNO

    Get PDF
    JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve

    Detection of the Diffuse Supernova Neutrino Background with JUNO

    Get PDF
    As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30M⊙M_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure

    Multilocus sequence typing revealed a clonal lineage of Aeromonas hydrophila caused motile Aeromonas septicemia outbreaks in pond-cultured cyprinid fish in an epidemic area in central China

    No full text
    Motile Aeromonas septicemia (MAS) has been increasingly prevalent in cultured fish throughout China since 1989. Over the past two decades, our laboratory conducted two pathogen detection studies in septicemia outbreak fishponds in an epidemic area in central China. One was conducted from May 1990 to October 1991, when MAS was beginning to spread in China, and the other was recently conducted from August 2006 to July 2009. We found that Aeromonas hydrophila was responsible for these MAS outbreaks. A. hydrophila isolates were previously known to be phenotypically, serologically, and genetically diverse and no dominant clones were found. In this study, multilocus sequence typing analysis was used to observe a clonal lineage of A. hydrophila, which was responsible for MAS outbreaks in pond-cultured cyprinid fish in an epidemic area in central China for two decades. (C) 2014 Elsevier B.V. All rights reserved

    Integrated siRNA design based on surveying of features associated with high RNAi effectiveness

    No full text
    Abstract Background Short interfering RNAs have allowed the development of clean and easily regulated methods for disruption of gene expression. However, while these methods continue to grow in popularity, designing effective siRNA experiments can be challenging. The various existing siRNA design guidelines suffer from two problems: they differ considerably from each other, and they produce high levels of false-positive predictions when tested on data of independent origins. Results Using a distinctly large set of siRNA efficacy data assembled from a vast diversity of origins (the siRecords data, containing records of 3,277 siRNA experiments targeting 1,518 genes, derived from 1,417 independent studies), we conducted extensive analyses of all known features that have been implicated in increasing RNAi effectiveness. A number of features having positive impacts on siRNA efficacy were identified. By performing quantitative analyses on cooperative effects among these features, then applying a disjunctive rule merging (DRM) algorithm, we developed a bundle of siRNA design rule sets with the false positive problem well curbed. A comparison with 15 online siRNA design tools indicated that some of the rule sets we developed surpassed all of these design tools commonly used in siRNA design practice in positive predictive values (PPVs). Conclusion The availability of the large and diverse siRNA dataset from siRecords and the approach we describe in this report have allowed the development of highly effective and generally applicable siRNA design rule sets. Together with ever improving RNAi lab techniques, these design rule sets are expected to make siRNAs a more useful tool for molecular genetics, functional genomics, and drug discovery studies.</p
    • …
    corecore